5y^4-7y^2+3/2=0

Simple and best practice solution for 5y^4-7y^2+3/2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5y^4-7y^2+3/2=0 equation:


y in (-oo:+oo)

5*y^4-(7*y^2)+3/2 = 0

5*y^4-7*y^2+3/2 = 0

t_1 = y^2

5*t_1^2-7*t_1^1+3/2 = 0

5*t_1^2-7*t_1+3/2 = 0

DELTA = (-7)^2-(3/2*4*5)

DELTA = 19

DELTA > 0

t_1 = (19^(1/2)+7)/(2*5) or t_1 = (7-19^(1/2))/(2*5)

t_1 = (19^(1/2)+7)/10 or t_1 = (7-19^(1/2))/10

t_1 = (7-19^(1/2))/10

y^2-((7-19^(1/2))/10) = 0

1*y^2 = (7-19^(1/2))/10 // : 1

y^2 = (7-19^(1/2))/10

y^2 = (7-19^(1/2))/10 // ^ 1/2

abs(y) = ((7-19^(1/2))^(1/2))/(10^(1/2))

y = ((7-19^(1/2))^(1/2))/(10^(1/2)) or y = -(((7-19^(1/2))^(1/2))/(10^(1/2)))

t_1 = (19^(1/2)+7)/10

y^2-((19^(1/2)+7)/10) = 0

1*y^2 = (19^(1/2)+7)/10 // : 1

y^2 = (19^(1/2)+7)/10

y^2 = (19^(1/2)+7)/10 // ^ 1/2

abs(y) = ((19^(1/2)+7)^(1/2))/(10^(1/2))

y = ((19^(1/2)+7)^(1/2))/(10^(1/2)) or y = -(((19^(1/2)+7)^(1/2))/(10^(1/2)))

y in { ((7-19^(1/2))^(1/2))/(10^(1/2)), -(((7-19^(1/2))^(1/2))/(10^(1/2))), ((19^(1/2)+7)^(1/2))/(10^(1/2)), -(((19^(1/2)+7)^(1/2))/(10^(1/2))) }

See similar equations:

| 6n-4=152 | | 6y=9x(2) | | 4(2x+2)-(2x+5)=-3 | | a-1=4(a-10) | | 8p=102 | | 3=(x/50)*100 | | 3=(x/50)100 | | 2x=3(x+4) | | Y=5m | | 7(v-4)=3v+72 | | 3x-3+x+5=90 | | 7x-x^2= | | 40a^2-32a=30 | | (9x)x(6x)=0 | | 5(x+4)=3x+4 | | -3y=18x+9 | | 6x-7y=-2 | | -3y=18x | | (30x^3+4^2-150)/(3x-5) | | 2n-11=n+9 | | 12-5y+6=y-6 | | 14=(x/0.12)*100 | | B/-1=-20 | | 15x+10x+15(x-1)+10(x-1)=225 | | 4a-15=2a+85 | | 250-n=150 | | 5a-(3a-2)= | | 2n-6+5=3n-3 | | -1=2.5w | | 6x^5-13x^4+6x^3=6x^2+13x-6 | | 5n-2=3n+40 | | x^2+4-8=0 |

Equations solver categories